Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula.

نویسندگان

  • Anton P Wasson
  • Kerry Ramsay
  • Michael G K Jones
  • Ulrike Mathesius
چکیده

* In this study, we tested whether the organogenesis of symbiotic root nodules, lateral roots and root galls induced by parasitic root knot nematodes (Meloidogyne javanica) was regulated by the presence of flavonoids in the roots of Medicago truncatula. Flavonoids accumulate in all three types of root organ, and have been hypothesized previously to be required for secondary root organogenesis because of their potential role as auxin transport regulators. * Using RNA interference to silence the flavonoid biosynthetic pathway in M. truncatula, we generated transformed flavonoid-deficient hairy roots which were used to study flavonoid accumulation, cell division and organogenesis of nodules, lateral roots and root galls. * Flavonoid-deficient roots did not form nodules, as demonstrated previously, but showed altered root growth in response to rhizobia. By contrast, flavonoid-deficient roots showed no difference in the number of lateral roots and root galls. Galls on flavonoid-deficient roots formed normal giant cells, but were shorter, and were characterized by reduced numbers of dividing pericycle cells. * We rejected the hypothesis that flavonoids are required as general regulators of the organogenesis of secondary root organs, but flavonoids appear to be necessary for nodulation. Possible reasons for this difference in the requirement for flavonoids are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula.

Plants associate with a wide range of mutualistic and parasitic biotrophic organisms. Here, we investigated whether beneficial plant symbionts and biotrophic pathogens induce distinct or overlapping regulatory pathways in Medicago truncatula. The symbiosis between Sinorhizobium meliloti and this plant results in the formation of nitrogen-fixing root nodules requiring the activation of specific ...

متن کامل

(Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula

Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutr...

متن کامل

Silencing the Flavonoid Pathway in Medicago truncatula Inhibits Root Nodule Formation and Prevents Auxin Transport Regulation by Rhizobia W

Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step...

متن کامل

Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.

Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step...

متن کامل

Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase

In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 183 1  شماره 

صفحات  -

تاریخ انتشار 2009